Classification of Breast Tissue by Texture Analysis

نویسندگان

  • Peter Miller
  • Susan M. Astley
چکیده

The identification of glandular tissue in breast X-rays (mammograms) is important both in assessing asymmetry between left and right breasts, and in estimating the radiation risk associated with mammographic screening. The appearance of glandular tissue in mammograms is highly variable, ranging from sparse streaks to dense blobs. Fatty regions are generally smooth and dark. Texture analysis provides a flexible approach to discriminating between glandular and fatty regions. We have performed a series of experiments investigating the use of granulometry and texture energy to classify breast tissue. Results of automatic classifications have been compared with a consensus annotation provided by two expert breast radiologists. On a set of 40 mammograms, a correct classification rate of 80% has been achieved using texture energy analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Classification of Diffused Liver Diseases Using Wavelet Transforms

Introduction: A major problem facing the patients with chronic liver diseases is the diagnostic procedure.  The conventional diagnostic method depends mainly on needle biopsy which is an invasive method. There  are  some  approaches  to  develop  a  reliable  noninvasive  method  of  evaluating  histological  changes  in  sonograms. The main characteristic used to distinguish between the normal...

متن کامل

Texture analysis of tissue surrounding microcalcifications on mammograms for breast cancer diagnosis.

Diagnosis of microcalcifications (MCs) is challenged by the presence of dense breast parenchyma, resulting in low specificity values and thus in unnecessary biopsies. The current study investigates whether texture properties of the tissue surrounding MCs can contribute to breast cancer diagnosis. A case sample of 100 biopsy-proved MC clusters (46 benign, 54 malignant) from 85 dense mammographic...

متن کامل

Multi-Resolution Wavelet-Transformed Image Analysis of Histological Sections of Breast Carcinomas

Multi-resolution images of histological sections of breast cancer tissue were analyzed using texture features of Haar- and Daubechies transform wavelets. Tissue samples analyzed were from ductal regions of the breast and included benign ductal hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (CA). To assess the correlation between computerized image analysis and visua...

متن کامل

Computerize classification of Benign and malignant thyroid nodules by ultrasound imaging

Introduction: Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Ultrasound is the chosen imaging technique for assessment of thyroid nodules. Confirmation of the diagnosis usually demands repeated fine needle aspiration biopsy (FNAB). So, current management, has morbidity and non zero mortality. The goal of the present study ...

متن کامل

Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy

This paper proposes a texture analysis technique that can effectively classify different types of human breast tissue imaged by Optical Coherence Microscopy (OCM). OCM is an emerging imaging modality for rapid tissue screening and has the potential to provide high resolution microscopic images that approach those of histology. OCM images, acquired without tissue staining, however, pose unique c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1991